

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

Semantic Object Framework – A language independent approach to integrate
semantic web and object oriented programming

Abstract

Object-oriented programming is a mainstream of present software
development, whereas a number of problems still existing in the integration of
the semantic web and the object-oriented programming must be solved, and
these problems being solved include: manipulating RDF API abstraction by
using object methods, automatically converting data into RDF format,
supporting an architecture for various programming languages, using
statements to describe the semantics of classes and attributes, supporting
query of inheritance and heterogeneous data between classes and attributes,
and verifying the consistency of data and semantics. The main reason to solve
these problems mentioned above is that the description capability of the
relationship between object-oriented classes has more limitation than that
used by RDF, and thus the failure of direct mapping exists between the
object-oriented class and the semantic web class. Although object-oriented
RDF APIs that are recently implemented for specific programming languages
try to alleviate the workload of development, these APIs generally only solve
certain part of problems mentioned above, with the result of lack of the
robustness of solutions. This paper proposes Semantic Object Framework
(SOF), and it incorporates the benefits of both object-oriented design and
semantic web, and uses embedding comments to describe the semantic
relationship between classes and attributes in order to solve all problems
mentioned above.

1. Introduction

Semantic web extends the description ability of WWW, and its basic concept is
to define the semantic relationship of data and allow that the data resulted from
additional process can be shared or processed by automotive tools (machines).
In various applications, this can be advantageously utilized for the effective
search of needed data, process automation, integration and reuse. RDF is a

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

data model representation of semantic web and, meanwhile, a basic RDF
document is a statement that is consisted of three elements, wherein these
three elements are Subject, Predicate, and Object. However, APIs that are
presently used to manipulate RDF are on the basis of Triple-oriented APIs to
manipulate statements that are consisted of three elements.

When developing semantic web applications, RD data models must be
handled in programming languages. However, the methods of present
mainstream software development utilize object-oriented programming, but it
is not suitable for handling semantic web data. Model View Controller (MVC)
that is most widely used in modern object-oriented programming is used as a
function-dividing architecture for designing classes, and the most common
implementation is that data objects pertaining to Model classes are converted
into record format for the storage of relational database. However, RDF utilizes
Triple-oriented statements as a basis of data format, but there is a significant
diversity between this and the format used by MVC Model classes, and a lack
of semantic relationship description between classes exists in object-oriented
classes, therefore it is not easy to automatically convert data objects to RDF
for the provision of semantic query. If a large amount of existing data is needed
to be converted to Triple-oriented format for storage, this could be a real
challenge from the view of performance and cost.

This paper proposes that SOF closely associates object-oriented design with
semantic web so that program developers don’t need to learn different
concepts, and you may easily publish data object as RDF format by simply
applying object-oriented design methods, and heterogeneous data query can
be also made in accordance with the semantic relationship between classes
and attributes.

An overview of this paper is briefly described as follows:
In chapter 2, we will survey what semantic web development technologies are
currently in use and their merits of these existing solutions, and thus readers
may fully understand currently used semantic web development technologies.
In chapter 3, we will discus what problems are needed to be solved by
associating object-oriented design and semantic web, and give you
information about the concept of a total solution you need.
In chapter 4, it describes the architecture of SOF and Class diagrams in order
that readers may understand the internal design principle of this system.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

In chapter 5, it gives an example of union query of both Gmail and ThunderBird
address books that are actually applied to the reality.
In chapter 6, it describes the trend for future study.
In chapter 7, it gives a conclusion of this paper.

2. Survey

An introduction to the background of the development of four semantic web
solutions, Jena [cited from Jena Document], ActiveRDF [cited from ActiveRDF
Document], D2R[cited from D2R Document], and EClass [cited from EClass
Document] will be given in the following paragraphs, and these four solutions
provide developers with various optional layers. Due to the significant diversity
among them, readers may fully understand the merits and demerits of present
semantic web development solutions after completing the introduction of these
four solutions.

Using Jena Solution

Jena is a present most popular Java RDF APIs that can utilize Triple Oriented
APIs to read/write and query RDF data. The main advantage of this solution is
that it entirely supports RDF low level operation and is also widely used.
Accordingly, the stabilization of implementing products can be obtained. Owing
to low level APIs supported and the lack of the integration of object-oriented
programming design, each operation step must be described in detail at the
phase of use, and however, even the consideration of the abstract idea of
object is also not available.

Using ActiveRDF Solution

ActiveRDF is a RDF object-oriented API that is based on Ruby programs, and
it further abstracts the Triple Oriented APIs, and uses object-oriented methods
to manipulate RDF document, and the lower level implementation still stores
the results derived from the conversion of data in Triple Oriented Storage, and
the purpose of which is to simplify the difficulty of calling APIs. The purpose of
such a solution of object-oriented APIs is not for the provision of automatically
publishing existing Model object data as semantic web for further query.
Additionally, due to the limitation of API implementation, this solution only

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

provides for the use of single programming langue, but not for
cross-programming language use.

Using D2R Solution

D2R is a special solution, and its idea is to directly convert the records in
relational database to RDF format for facilitating the read/write or query of RDF.
Because the target being manipulated is database, D2R is applicable to any
programming language, so that D2R will fully automatically take the action of
format conversion, and the intervention of programmers to convert data is not
necessary as long as the mapping relationship between database tables and
RDF is clearly specified. Again, due to the database used as a target being
manipulated by D2R, the object-oriented encapsulation is not supported, and
thus there is no way to manipulate data by using objects.

Using EClass Solution

EClass solution proposes an idea for changing Java or C++ syntax, and it
renames the Class declared in Java language as EClass, and thus the
definition of language has been directly changed. Capital E means extension,
because it allows developers to define semantic relationship between
attributes. However, if you want to change programming syntax that has been
widely used, you will meet an obstacle, the syntax definition used must not
only affect existing programming languages, but also describe the semantic
relationship between classes and attributes. Moreover, the query function of
cross-heterogeneous data objects is not yet mentioned in EClass solution, and
thus this should be enhanced in the future.

3. Problem Statement

This chapter will discuss some problems resulted from the combination of
semantic web and object-oriented design, and show a table concluded from
what problems have been solved by existing solutions so that readers may
refer to the main diversity between solutions. The following will discuss what
functionalities and features must be supported for each issue while combining
semantic web and object-oriented design.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

3.1 Manipulating RDF API Abstraction by Using Object Methods

Although low level RDF APIs provide entire RDF read/write and query
operations, developers have no way to utilize objects to manipulate RDF data,
therefore the duration of development is longer and program codes are
relatively larger and thus the maintenance is not a ‘piece of cake’. Therefore,
object-oriented design is utilized to abstract RDF API in order that developers
may more effectively write productive program codes.

For solving this problem, SOF allows developers to utilize object-oriented APIs
to make a query, and its corresponding query result may be also returned by
means of data objects.

3.2 Automatically Converting Data into RDF Format

Although RDF APIs may store data in Triple Store for the purpose of semantic
query, developers themselves must accomplish the action of converting data
objects into Triple Store format, and as you know, this is a trivial matter and
time consuming. In other words, if there is a development architecture which
has an ability to fully automatically convert data objects into RDF format for
publishing, the time to develop system can be significantly saved.

For solving this problem, SOF allows that developers don’t need to carry out
the responsibility of converting data to RDF, and quite the contrary, the course
of publishing data objects as RDF format can be fully automatically done by
SOF, and thus significantly reduce developers’ burden. Moreover, SOF also
provides an embedded Web Server which allows programs provided by the 3rd
party to use HTTP Protocol to read latest RDF format data.

3.3 Supporting an architecture for Various Programming Languages

At present, for aiming at various programming languages, some
object-oriented APIs may manipulate RDF documents [cited from Python,
Ruby ActiveRDF, and related APIs], whereas these implementations target to
specific languages, and thus an inconsistency exists between them.

For solving this problem, SOF syntax is not specially bound to a certain
object-oriented programming, since SOF utilizes comments to describe the

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

semantics of classes and attributes so that SOF Parser can be repeatedly
used through a minimum modification needed in various programming
languages. And meanwhile, many programmers just only learn one usage of
SOF and thus they can be applied in various programming languages.

3.4 Using Statements to Describe the Semantics of Classes and
Attributes

The natural way to combine both semantic web and object-oriented design is
to describe the semantics of classes or attributes. At the time of defining
classes, you should also clearly express the semantic relationship, and lately,
the query of data objects can be taken. However, in case of that classes and
attributes need to be modified, you must usually modify the syntax of
programming language so that modifying the semantic relationship of both
classes and attributes under the case without adversely affecting the original
programming syntax is an important issue.

For solving this problem, SOF utilizes embedding comments to allow using
part of RDF and OWL syntaxes for modifying the semantic relationship
between object-orient classes and attributes.

3.5 Momentarily Maintaining the Synchronization of Semantic
Description File and Class Definition

In present semantic web implementation, some solutions provide independent
RDF semantic description files to additionally modify the relationship between
existing data, whereas this will result in the need of momentarily maintaining
synchronous update between files otherwise the inconsistency will occur.

A well known example is that program API description document and program
codes themselves are mutually independent files, so that the description
document is not usually updated in time with the result of obsolete and
erroneous description.

For fully combining program description documents and program codes
themselves in order to prevent the inconsistency between them, JavaDoc
utilizes a way of comments embedded in program codes, and thus
programmers may easily maintain the consistency between JavaDoc and

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

program codes. [cited from JavaDoc Technology][cited from PyDoc
Technology]

For solving this problem, SOF applies similar principles to maintain the
synchronization of program codes and semantic description, including a way of
embedding in program codes.

3.6 Supporting the Inheritance between Classes and Attributes and the
Query of Heterogeneous Data

In different databases, the situation of entirely different column names with the
same meaning is usually occurred, e.g. the column name in Email in database
A may be called “email”, but in database B, it may be called “mail”. In case of
progress of union query of all Emails stored in two different databases, the
semantics of both email and mail must be clearly defined so that computer
may essentially know both terms mean the same thing. We now have no a
good architecture to define the semantic relationship between classes and
attributes in object-oriented programming codes in order that the system may
automatically handle the query function of different attribute names with the
same meaning.

In addition, the union query of heterogeneous data source may also create
such a case, e.g. in data objects resulted from query, they may pertain to
different classes, and thus a mechanism should be provided in order to allow
object-oriented programming codes to distinguish classes pertaining to
different data objects, and respectively manipulate attributes based on diverse
classes that attributes belong to.

For solving this problem, SOF allows you to utilize comments to maintain an
inheritance relationship between attributes, and allows developers to make
union query of heterogeneous data objects.

3.7 Consistency Check of Data and Semantics

After modifying the semantics of classes or attributes, the situation of some
conflicts between data objects and semantics may occur, e.g. in account
management system, if we assign an Email value pertaining to one unique
account, then a conflict may be occurred when two accounts have the same

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

Email value. A good solution must be easily applied to figure out this conflict in
order to ensure the consistency of data and semantics.

For solving this problem, SOF provides APIs for querying objects in order that
developers can make consistency check of semantics.

Comparison table of SOF and existing solutions
(Jena/ActiveRDF/D2R/EClass)

This paper proposes Semantic Object Framework (SOF) that is designed to
fully solve seven problems mentioned above. With reference to the content in
Table 1, it describes the detailed comparison among five semantic web
development schemes that are used to effectively solve seven problems
mentioned above, wherein X denotes “impossible to solve this problem” while
O denotes “this problem can be solved”.

Table 1: A function comparison table of five semantic web development
schemes
Problem Jena ActiveRDF D2R EClass SOF
3.1 X O X O O
3.2 X X O O O
3.3 X X O X O
3.4 X X X O O
3.5 X X X O O
3.6 X X X X O
3.7 X X X X O

4. Solution

This section proposes the SOF architecture to solve seven problems
mentioned in Chapter 3, and also applies an architecture diagram to describe
how the SOF architecture accomplishes its design target. Finally, in this
section, we use an example of the heterogeneous address book query to allow
readers to experience how SOF successfully integrates object-oriented design
and semantic web technologies.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

SOF Architecture

An introduction to the SOF architecture will be given below, including an
introduction to the use of five main modules as well as the workflow of
input/output relationship among them.

[Diagram 1] Five SOF primary modules

SOF is consisted of five mail modules, with reference to diagram 1, an arrow
shape model objects include data object of data content while ontology objects
include the semantic relationship between classes and attributes. The main
use of five modules will be described respectively in the following paragraphs.

SOF data adapter

The function of this module is to read various data sources to convert these
data sources to model objects. Data sources can be CSV file format or records
in database or APIs used for reading various proprietary data. Programmers
may also write data adapters for other data sources so that the consistency of
data process for SOF can be accomplished once the data sources are
converted to model objects. Meanwhile, SOF provides a flexible architecture
with various data source format for the purpose of future use.

The output of SOF data adapter is model objects wherein data are presented
by way of objects, and model objects include all actual data contents, i.e.
attribute value of each data and, moreover, they will become input parameters
of both SOF Query Engine and SOF RDF Generator.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

SOF parser

The function of this module is to parse SOF statements from the comment
lines in source program in order to generate ontology objects. For providing
independent features, SOF parser must support the use for various popular
objected-oriented languages, whereas the description of comments in each
language is not quite the same so that SOF utilizes a writing syntax cross
different languages, and thus SOF statements can be merged with all
comments in different programming languages, meanwhile all programming
languages share the same SOF parser codes.

The output of SOF parser is ontology objects wherein the semantic
relationship of both classes and attributes are presented by the representation
of objects, and ontology objects will become input parameters of SOF RDF
Generator and SOF Query Engine.

SOF RDF generator

The purpose of this module is to output model objects in RDF format in order
that the codes provided by third parties can read RDF format data due to that
the semantic relationship among model objects has been recorded in ontology
objects so that RDF format files including semantic relationship can be
ultimately generated.

SOF query engine

The purpose of this module is to provide object-oriented APIs with union query
cross-heterogeneous data sources. In addition to the utilization of the
object-oriented style by query APIs, the query results will return to developers
in a way of the union of object arrays. Due to that the array of model objects
returned may be respectively dedicated to multiple different classes, suitable
APIs for type conversion must be provided to handle the issues of format
conversion.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

SOF web server

The purpose of this module is to provide an entry for HTTP Protocol in order
that programs provided by third parties can read latest RDF documents due to
that SOF utilizes a way of dynamic conversion to convert data to RDF, so that
any RDF documents are read from SOF web server, any changes of the latest
content of model objects can be guaranteed, an thus we are no longer
concerned about the consistency of data.

SOF Class Diagram

An introduction to a class diagram of four mail modules will be given in the
follow paragraphs, wherein SOF web server only provides interfaces for
request from external and thus the description of this class diagram will be
ignored here.

 [Diagram 2] Class diagram of SOF data adapter

The input terminal of SOF data adapter may be various data sources, and after
the model object format outputted is converted from these data,
object-oriented APIs can be utilized to read and write these model objects.

With reference to diagram 2, we here may observe four different SOF data

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

adapters, wherein: DatabaseAdapter may read records through database APIs,
RdfAdapter reads data files in RDF format, GmailContactAdapter reads
address book data through Gmail APIs, and finally
ThunderBirdContactAdapter reads address book data file format from
ThunderBird, whereas all these four different SOF data adapters are inherited
from SofDataAdapter class so that they have common operation methods.

In object-oriented programming, Model-View-Controller (MVC) is a usually
used method (it is cited from related MVC papers) wherein Model represents
data themselves. The ultimate output format of SOF data adapter is aimed at
Models in MVC. In general, model objects provide operation methods of
reading and writing object attributes.

[Diagram 3] Class diagram of SOF parser

The input of SOF parser is source codes of various programs, and these
source codes include SOF statements, wherein these SOF statements
describe the semantic relationship between classes and attributes, and SOF
parser will convert SOF statements to ontology objects and output them.

With reference to diagram 3, we may observe three different SOF parsers,
wherein: PythonSofParser is responsible to read Python codes,
JavaSofParser is responsible to read Java codes, and RdfSofParser has the
responsibility of reading the semantic relationship of classes in RDF file format.
These three classes are inherited from SofParser class, and shared program
codes for these three classes may be implemented in SofParser class.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

Ontology objects outputted by SOF parser record the semantic relationship
between classes and attributes, and those can be also presented by the
representation of objects. If ontology objects and model objects are used at the
same time, then the semantic query to cross-heterogeneous data sources can
be taken on model objects.

[Diagram 4] Class diagram of SOF query engine

The inputs of SOF query engine are model objects and ontology objects,
wherein model objects can be object array combined from various classes,
and ontology objects may explain inheritance relationship and semantic
relationship between these model objects. SOF query engine may accept
query statements, and output the query results in the form of model objects.

With reference to diagram 4, three different SOF query engines are shown,
wherein: FilterSofQueryEngine has a responsibility of conditionally filtering
semantic query, ValidSofQueryEngine is responsible for querying model
objects that are coincided with semantic rules, and InvalidSofQueryEngine
aims at querying model objects pertaining to illegal semantics. These three are
inherited from SofQueryEngine, and output results are all model objects.

If ultimately generated query results, model objects, are outputted from

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

FilterSofQueryEngine, only model objects accorded with query conditions will
be listed, and at the time of query, you may enter object arrays for various
classes, so the query results also include objects used by different classes.
Due to that program developers may use APIs to obtain original class types of
model objects, special processes can be taken for different classes, if
necessary. If the query results belong to the output of InvalidSofQueryEngine,
then model objects will also include the reason descriptions why this object is
classified as an illegal object in order that developers know how to modify this
error.

 [Diagram 5] Class diagram of SOF RDF generator

The inputs of SOF RDF generator are model objects and ontology objects,
respectively, and this SOF RDF generator may output RDF strings including
semantic relationship between classes and attributes by combining these two
inputs.

With reference to diagram 5, the last RDF string output may be directly stored
in file or accessed by other applications with HTTP service through SOF web
server. Due to that RDF string is W3C standard format and includes the data
contents of model objects as well as the semantic relationship of ontology
objects, any application which can handle RDF format can easily query and
merge RDF strings.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

5. Examples

This Chapter will utilize realistic examples to describe how to use SOF. SOF
provides two main functions, wherein one is used to automatically convert data
objects and publish RDF format derived therefrom, and the other one is used
to make semantic query over cross-heterogeneous data sources. In our
examples, address book data supported by two different softwares, Gmail and
ThunderBird, will be used to demonstrate the main functions of SOF. Due to
that different attribute names are utilized by these two address books, data
format is not quite the same, so that if developers want to write programs for
making a query over different address books, they will suffer many bothersome
format conversion flows. Here, we take Python language as an example, SOF
is utilized to add semantic relationship to the attributes applied by Gmail and
ThunderBird address books at the time of the declaration of classes. After the
completion of establishing semantic relationship, two functions of SOF will be
demonstrated, wherein one is to utilize SOF to automatically and
simultaneously publish these two address books as RDF format, and the
second one allows you to make semantic query over different heterogeneous
address books.

Using OWL Syntax to Define Two different Address Book Classes in
Comments

Before making a union query over two different address books, we first define
a class named “Contact” in order that this class may have common attributes
used by these two address books, and from the view of semantics, this class
will be lately inherited by GmailContact and ThunderBirdContact.

class Contact(Model):
 partOfName=''
 partOfAddress=''
 #owl:InverseFunctionalProperty Contact_email
 email=''
 phoneNumber=''
 #Contact_officePhoneNumber rdfs:subClassOf Contact_phoneNumber
 officePhoneNumber=''

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

 #Contact_homePhoneNumber rdfs:subClassOf Contact_phoneNumber
 homePhoneNumber=''
 #Contact_mobilePhoneNumber rdfs:subClassOf Contact_phoneNumber
 mobilePhoneNumber=''
 #Contact_faxPhoneNumber rdfs:subClassOf Contact_phoneNumber
 faxPhoneNumber=''

Due to that Contact class in classical Model-View-Controller (MVC) design
model belongs to Model data class, we declare class Contact(Model) to
represent Contact inherited to Model class. Data classes inherited to Model
can be serially stored in database, and conditional data query is allowed.

The meaning of the presentation of the attribute name partOfName is a contact
person's name, and the possibility of the presentation of contact person's
name contains surname/name/middle name/full name/nickname etc. We here
allow partOfName to represent any possible segment of name or full name and
later, if semantics of any other attributes is inherited to partOfName, and the
attribute of which is used to identify one of contact person name strings.

The pound sign ‘#’ used in Python language represents a comment, and due to
the SOF syntax is embedded in comments, any ‘owl:’ or ‘rdfs:’ included in
comments means that this statement is a specific one for SOF.
‘#owl:InverseFunctionalProperty Contact_email’ utilizes OWL syntax to modify
its semantics, which means that in case of the coincidence of email strings, the
representation of Contact object must be unique person, and this should not be
occurred in the case of the coincidence of email strings, but Contact object
has two situations mentioned above. In case of that two Contact objects have
the same email string in data, SOF thus has ability to find out two Contact
objects conflicted and pass it to programmers and thus, they can solve illegal
semantics used in data by applying various strategies. These OWL statements
are helpful for programmers to apply rich syntaxes to limit the relationship
between data objects.

The representation of email attribute is E-mail. However, in different address
book software, email attribute name may have the following types:
Email/email/mail/Mail/emailAddress/EmailAddress, and the semantics used by
these different attribute names are fully identical in meaning. If we want to
display all attribute values of all emails cross heterogeneous address books,

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

the semantics of the attribute ‘rdfs:subClassOf inherited to Contact_email’
must be used in attributes in various emails.

Other attributes are easily to be understood so that they are ignored.

Next, we will now take a look on how the GmailContact is inherited to
well-defined attributes.

#GmailContact rdfs:subClassOf Contact
class GmailContact(Model):
 #GmailContact_name rdfs:subClassOf Contact_partOfName
 name=''
 #GmailContact_email rdfs:subClassOf Contact_email
 email=''
 #GmailContact_phone rdfs:subClassOf Contact_officePhoneNumber
 #GmailContact_phone rdfs:subClassOf Contact_homePhoneNumber
 phone=''
 #GmailContact_mobile rdfs:subClassOf Contact_mobilePhoneNumber
 mobile=''
 #GmailContact_fax rdfs:subClassOf Contact_faxPhoneNumber
 fax=''
 company=''
 title=''
 #GmailContact_address rdfs:subClassOf Contact_partOfAddress
 address=''

The representative meaning of #GmailContact rdfs:subClassOf Contact is that
the class GmailContact is semantically inherited to Contact class so that if any
object query commands are being used to query all Contact data object,
GmailContact object inherited to Contact class is also within the scope of
targets being queried and later, we will show that ThunderBirdContact is also
semantically inherited to Contact, so that when developers want to query data
objects from two different address books, Gmail/ThunderBird, SOF may
automatically determine that both GmailContact and ThunderBirdContact
objects must be involved within the scope of query if the target being queried is
Contact class, and thus the purpose of querying heterogeneous address
books may easily accomplished.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

This comment line ‘#GmailContact_name rdfs:subClassOf
Contact_partOfName’ describes that the name attribute in GmailContact class
is semantically inherited to the partOfName attribute of Contact class. This
means that if developers specify the string value of Contact_partOfName
attribute that is being queried at the later time, SOF will also automatically
query the string value of GmailContact_name attribute.

Next, the statement being introduced is with reference to a multiple inheritance
relationship with GmailContact_phone: ‘#GmailContact_phone
rdfs:subClassOf Contact_homePhoneNumber’ represents the attribute
‘GmailContact_phone’ is probably be a office telephone, or may be a home
telephone. Due to that RDF syntax allows multiple inheritance relationship,
SOF may still allow you to semantically describe the multiple inheritance
relationship for classes or attributes even if multiple inheritance is not
supported in programming languages, such as Java. We take
GmailContact_phone as an example, whichever developers choose
Contact_officePhoneNumber or Contact_homePhoneNumber as a target
being queried at the later time, SOF will always automatically query
GmailContact_phone attributes.

Due to that the semantic inheritance relationship of other attributes pertaining
to GmailContact is very straight, readers may understand their meaning from
program code segment, and thus the explanation of which is ignored. The
following example is given for the purpose of seeing how ThunderBirdContact
is semantically inherited to Contact.

#ThunderBirdContact rdfs:subClassOf Contact
class ThunderBirdContact(Model):
 #ThunderBirdContact_mail rdfs:subClassOf Contact_email
 mail=''
 #ThunderBirdContact_givenName rdfs:subClassOf Contact_partOfName
 givenName=''
 #ThunderBirdContact_sn rdfs:subClassOf Contact_partOfName
 sn='' #first name
 #ThunderBirdContact_cn rdfs:subClassOf Contact_partOfName
 cn='' #full name
 #ThunderBirdContact_telephoneNumber rdfs:subClassOf
Contact_officePhoneNumber

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

 telephoneNumber=''
 #ThunderBirdContact_homePhone rdfs:subClassOf
Contact_homePhoneNumber
 homePhone=''
 #ThunderBirdContact_fax rdfs:subClassOf Contact_faxPhoneNumber
 fax=''
 #ThunderBirdContact_mobile rdfs:subClassOf
Contact_mobilePhoneNumber
 mobile=''
 #ThunderBirdContact_homeStreet rdfs:subClassOf
Contact_partOfAddress
 homeStreet=''
 #ThunderBirdContact_mozillaHomeLocalityName rdfs:subClassOf
Contact_partOfAddress
 mozillaHomeLocalityName=''
 #ThunderBirdContact_mozillaHomeState rdfs:subClassOf
Contact_partOfAddress
 mozillaHomeState=''
 #ThunderBirdContact_mozillaHomePostalCode rdfs:subClassOf
Contact_partOfAddress
 mozillaHomePostalCode=''
 #ThunderBirdContact_mozillaHomeCountryName rdfs:subClassOf
Contact_partOfAddress
 mozillaHomeCountryName=''
 #ThunderBirdContact_street rdfs:subClassOf Contact_partOfAddress
 street='' #street of company
 #ThunderBirdContact_l rdfs:subClassOf Contact_partOfAddress
 l='' #locality name of company
 #ThunderBirdContact_postalCode rdfs:subClassOf
Contact_partOfAddress
 postalCode='' #postal code of company
 #ThunderBirdContact_c rdfs:subClassOf Contact_partOfAddress
 c='' #country name of company
 title=''
 department=''
 company=''
 mozillaHomeUrl=''

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

ThunderBirdContact class and GmailContact class are all semantically
inherited to Contact class, and readers may know this class is more complex
than GmailContact from various attributes pertaining to ThuderBirdContact,
and particularly, those are with reference to address. No distinction exists
between Home address and company address, even though
country/county/street attributes are also not distinguished. GmailContact only
adopts an address attribute to represent all possible address string. In
ThunderBirdContact, the number of attributes with reference to address is up
to nine, and these attributes are semantically inherited to
Contact_partOfAddress.

With further reference to diagram 6, in ThunderBirdContact, number of
attributes pertaining to contact person name is three, while GmailContact has
only a name attribute to represent this contact person name. Attributes
pertaining to ThunderBirdContact, GmailContact, and name are all
semantically inherited to attributes of Contact_partOfName.

Diagram 6 - a diagram of attributes inherited to Contact_partOfName

Up till now, we have established the semantic relationship of Contact,
GmailContact, and ThunderBirdContact, because SOF utilizes comments to
embed semantic description into programming codes, and thus readers who
are reading these codes may easily find out the mapping relationship of
semantics between attributes. Next, no matter whether SOF publishes data
objects as RDF format or a query is being taken on data objects by SOF, they
can be easily accomplished.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

Automatically Publishing Address Books as RDF Format

SOF allows address books are automatically published as RDF format, due to
that HTTP access must be adopted in RDF format data, so that an SOF Web
Server existed in SOF system is responsible for providing entry point of HTTP,
and thus the corresponding data object RDF format can be accessed as long
as URL is appropriately used, e.g. http://127.0.0.1:8080/sof/Contact/, which
may be used to obtain RDF data format of data objects pertaining to Contact.
At this time, data objects pertaining to GmailContact and ThunderBirdContact
will be used together in a format of RDF for further reading being taken by
developers. If a developer only wants to access RDF pertaining to its sub-class
in person, the following URL may be used to accomplished this goal, e.g.
http://127.0.0.1:8080/sof/GmailContact/ which may be used to access RDF
format data of all data objects pertaining to GmailContact, but not including
data objects pertaining to ThunderBirdContact.

Due to that SOF adopts an implementation technology to dynamically convert
data objects to RDF format, the latest change data can be obtained from URL
each time, and the performance can be promoted by applying Cache
technology. If data is not changed, the same can be obtained by adapting last
RDF result from Cache; if data is changed, it is needed to automatically
regenerate a RDF format document.

Making a Querying on cross-heterogeneous address books

After address books pertaining to Gmail and hunderBird are published as
semantic web, the union query on cross-heterogeneous database sources is
one of most useful functions in semantic web. The following codes has ability
to find out data objects pertaining to email attribute ending with ‘nctu.edu.tw’
string from sub classes inherited to Contact.

It is noted that both GmailContact and ThunderBirdContact represents Email
attribute names are not the same. In Gmail, the Email attribute is called email,
but in ThunderBird, Email attribute is called mail. Although both attribute
names are not the same, the function of union query is not adversely affected,
because they are inherited to attributes pertaining to Contact_email, so that all
matched data objects will be found.

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

 lstContact=Contact.objects.get("email like '%nctu.edu.tw'")
 intCounter=0
 for contact in lstContact:
 intCounter+=1
 print '=== Contact %s ==='%intCounter
 print 'partOfName:\n %s'%contact.partOfName
 print 'email:\n %s'%contact.email

Code segments described above will find out data objects with Email name
ended with ‘nctu.edu.tw’ from all classes inherited to Contact, wherein
Contact.objects.get is a key statement to query objects, and its syntax is
similar to SELECT command used in database SQL. The following statement
is show while that is compared to SQL command :

select * from Contact where email like '%nctu.edu.tw'

After matched data objects are found, they may have two different types:
GmailContact or ThunderBirdContact. A for loop is then followed, and
partOfName and email attributes pertaining to data objects found are displayed
on the screen. The result is shown below:

=== Contact 1 ===
partOfName:
 "GmailContact_name":"Bowen Chiu",
email:
 "GmailContact_email":"bowen@nctu.edu.tw",
=== Contact 2 ===
partOfName:
 "ThunderBirdContact_givenName":"Kao",

"ThunderBirdContact_sn":"Gloria",
"ThunderBirdContact_cn":"Gloria Kao",

email:
 "ThunderBirdContact_mail":"gloria@nctu.edu.tw",

In this case, two records about data objects are displayed, wherein the first
record is that Contact 1 pertains to data objects of GmailContact class, and the
string value of contact.partOfName is "GmailContact_name":"Bowen Chiu".

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

From it, we found this is a key:value pair, wherein the leading word, ‘key’, is
GmailContact_name which allows developers know a name “Bowen Chiu”
followed belongs to GmailContact_name.

The second record, data objects pertaining to Contact 2, belongs to
ThunderBirdContact class, so that the representative meaning of
contact.partOfName is more complex, the value of contact.partOfName here
corresponds to an array that is delimited by the comma, ‘,’, character, and
key:value pair for givenName, sn, cn three attributes in ThunderBirdContact is
listed due to that these attributes in ThunderBirdContact class are inherited to
contact.partOfName, so that key:value pairs of these three attributes will be
put in the query result of contact.partOfName after the result of union query
comes out.

If it is needed to provide different data display method for each class,
developers may determine a class that this object belongs to in accordance
with ‘key:value’ pair pertaining to returned data objects, so that at the time of
union query, display format for different classes can be properly adjusted or
you don’t need to adjust display format in case of simple use, and all
‘key:value’ pairs found will be directly displayed on the screen.

From this, we may see the strength of query made over cross-heterogeneous
address books by SOF. You only simply describe the inheritance relationship
between attributes described above in comments, ad thus different attribute
names but with the same meaning can be distinguished so that it is easy and
convenient for you to find out all matched data at the same time.

Querying Data Sets with Legal or Illegal Semantics

Due to that RDF may aim to restrict the semantic relationship between objects,
it is possible that limitation conditions assigned to certain data objects may be
illegally assigned by RDF, so that in some situation, we may need to
distinguish between legal data or illegal data.

For example, if we wish to find out non-duplicated mail name lists, wherein
GmailContact and ThunderBirdContact may probably contains duplicated
contact person data, an SOF statement ‘#owl:InverseFunctionalProperty

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

Contact_email’ previously defined can be utilized at this moment. In the
statement, the value of Contact_email attribute which is limited must belong to
unique Contact, i.e. any two Contact data objects may not have the same
Email value. If a same Email attribute value exists in more than two Contact
data objects, they will be viewed as the same Contact from the view of
semantics. Through such a limitation, we may utilize getInvalid() API to find
which data objects violate this principles, and display them on the screen. We
here take the following program segment as an example:

 lstContact=Contact.objects.getInvalid()
 for contact in lstContact:
 print 'partOfName:%s'%contact.partOfName
 print 'phoneNumber:%s'%contact.phoneNumber
 print 'invalid reason:%s'%contact.getInvalidReason()

The first illegal data is shown below:

partOfName:

"GmailContact_name":"Bowen Chiu",
phoneNumber:

"GmailContact_phone":"+88635727001",
"GmailContact_mobile":"+886922387002",

invalid reason:validation fail ->
owl:InverseFunctionalProperty(Contact_email,Contact)

The second illegal data is shown below:

partOfName:

"ThunderBirdContact_givenName":"Chiu",
"ThunderBirdContact_sn":"Bowen",
"ThunderBirdContact_cn":"Bowen Chiu",

phoneNumber:
"ThunderBirdContact_telephoneNumber":"+88635727001",
"ThunderBirdContact_homePhone":"+88638885003",
"ThunderBirdContact_mobile":"+886993288002",

invalid reason:validation fail -> owl:InverseFunctionalProperty Contact_email

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

We found that the first record of illegal data objects belongs to GmailContact,
and the second one pertains to ThunderBirdContact. Although they are
different data objects, they are considered as illegal data because of identical
Email attribute values, i.e. the same Contact is used from the view of
semantics. SOF successfully cross two different address books, thus it is
important that the function to find semantically duplicated data object is
generally used in printing non-duplicated mail name list and thus the same
thing mailed to the same person can be avoided. Meanwhile,
contact.getInvalidReason() command may even display the cause of the
violation of RDF semantic limitation resulted from data objects for further
actions being taken by developers, such as deleting a redundant data object or
merging these two data objects into one.

If you intend to use a command to read all legal data objects,
‘lstContact=Contact.objects.getValid()’ can be used to add all legal data
objects into lstContact array, wherein these objects are Contact data objects
which have no duplicated Email attributes.

6. Future Work

SOF architecture proposed in this paper may automatically publish data
objects as RDF format, and the union query can be also taken on
heterogeneous data. Although this is a powerful class/object publication flow,
the tool modules extended from the SOF idea are not quite enough, especially
in the part of automation support for IDE development tools. If an IDE
development environment for various languages to support auto complete,
dynamic syntax checking, and even the semantic relationship between class
which are graphical representation can be established in the future, the mutual
synchronization between semantic diagrams and program codes may be
accomplished, and thus an abstract development environment for specifying
the semantic relationship of classes can be utilized. These mentioned above
are the case of applying SOF idea to gradually accomplish the desired goal.

In addition, in case of that an illegal syntax of SOF statement occurs or a
conflict of semantics exists between SOF statements, we need more powerful
tool to automatically check such a problem and report the checking result to

ㄧ
祥
翻
譯
社

 樣
本

Elegant Translation Service Sample

請
勿
複
製

Do not copy

developers for further actions in the future. We do believe that related
development tools will be well supported after SOF idea is getting more
considerable and introduced.

7. Conclusion

This paper concentrates on the publication of data objects to RDF document
that provides SOF solutions for automatic conversion. In the past, in case of
publishing data objects as RDF, the publication can generally be done through
manually converting data objects to Triple Store. In this paper, SOF idea is
used to modify semantics between classes and attributes that are embedded
in program codes, and enhance the lack of the description of relationship
between classes and attributes in object-oriented languages. In addition to
remaining the synchronization of relation description between classes and
program codes, SOF may also provide tools set independent of programming
languages that can support for various languages and are not limited by the
implementation in a specific language. SOF provides a quite direct publication
flow for semantic web, allows you to make a query over cross-heterogeneous
data sources, and successfully incorporate the merits of both object-oriented
programming and semantic web.

	Abstract
	1. Introduction
	2. Survey
	Using Jena Solution
	Using ActiveRDF Solution
	Using D2R Solution
	Using EClass Solution

	3. Problem Statement
	4. Solution
	SOF Architecture
	[Diagram 1] Five SOF primary modules
	SOF data adapter
	SOF parser
	SOF RDF generator
	SOF query engine
	SOF web server

	SOF Class Diagram
	[Diagram 2] Class diagram of SOF data adapter
	[Diagram 3] Class diagram of SOF parser
	[Diagram 4] Class diagram of SOF query engine
	[Diagram 5] Class diagram of SOF RDF generator

	5. Examples
	6. Future Work
	7. Conclusion

